Implementation of the Union Catalogue Profile (UCP)

Experience and guidelines

Janifer Gatenby, European Product Manager, Geac Computers

Version Control

Version number
Date
Author
Comments

1
15th June 1999
Janifer Gatenby

2
16th June 1999
Janifer Gatenby
Editorial corrections

Table of Contents

21
Introduction

1.1
UCP and the National Library of Australia
2
2
Server Implementation
3
2.1
Database changes
3
2.2
Database additions - Task Package
4
2.3
Software changes
4
2.3.1
Enquiry changes
5
2.3.2
Changes for update
5
2.3.3
Implementation decisions
6
2.4
Data Integrity
7
2.4.1
Prevention of update collision
7
2.4.1.1
Version control via date / time stamp
7
2.4.1.2
Control via record locking
8
2.4.2
Prevention of accepting incomplete records in record replace
8
2.4.3
Error Control
9
2.4.4
Ensuring synchronisation of records in local and union catalogues
9
2.5
Updating status codes
9
3
Implementation stages
11
4
References
11
4.1
System and Software Resources
11
4.2
Documentation resources
12

1 Introduction

The Union Catalogue Profile (UCP) was implemented by Stowe Computing Australia to fulfill a requirement to provide an efficient means of cataloguing, entailing accessing multiple resources and subsequently updating more than one catalogue. The UCP was implemented on both client (Strategy) and server (BOOK Plus). In December 1998, Stowe Computing Australia was acquired by Geac Computers and its systems, Strategy and BOOK Plus, now form part of the Geac product range of library solutions.

The Strategy cataloguing client allows access to MARC cataloguing records from any Z39.50 enabled server. These records are edited as required then will automatically update databases defined for update. This could include a local integrated library management system and a national union catalogue. The system remembers the source of the record and determines from this the necessary updating required. For example, if a record were obtained from the union catalogue it would send bibliographic and holdings record inserts to the local database and a holdings record insert only to the union catalogue.

The design ensures the continued maintenance of a union catalogue by reducing the processing steps involved in the maintenance of the union catalogue. Once a cataloguing record has been approved for update, the "O.K." button will trigger the Z39.50 UCP update transaction to all databases configured for update. Against each target database, a profile determines how to create UCP transactions, specific for the database. The target database profile includes such things as:

· Character set

· MARC record format (if different from the MARC record used for the user interface, a conversion program is applied)

· Fields and subfields to delete or to add with default data

· UCP options implemented

This document focuses on server implementation requirements and experiences, noting complementary client behaviour where appropriate.

1.1 UCP and the National Library of Australia

Stowe Computing Australia cooperated with the National Library of Australia (NLA) to develop the Union Catalogue Profile (UCP). This development was started in 1996 when the NLA was developing a system jointly with the National Library of New Zealand (NDIS). That development ceased and both National Libraries called tenders. Meanwhile, Stowe had continued to develop its UCP client and as part of this made its own UCP server that has been made available for world-wide for testing.

The UCP never became part of the NDIS project and when it was developed, it was aiming at an ultimate solution rather than one specifically for NDIS. The aim was to develop a protocol or profile that would facilitate the ongoing upkeep of union catalogues in a distributed environment. The then existing Australian National Union Catalogue (Australian Bibliographic Network ABN) was a centralised network, updated primarily by dedicated dumb terminals and PCs with terminal emulation. A proprietary software solution was seen as not very desirable for the future longevity of the national union catalogue. Australian library members of the union catalogue system would not want to use one client software to update their own local system and another to update the national system.

The new National Union Catalogue system in Australia that replaces ABN is called Kinetica. Kinetica started production in March 1999. It uses the Amicus software that has not yet been UCP enabled, however this is planned as soon as the initial installation is bedded down. Geac is ready to play an active role in technical assistance and testing of the Kinetica server implementation of the UCP. As the UCP is not ready for initial implementation, the interface between the Strategy client and Kinetica will be using FTP. The Strategy client can also interface by e-mail.

The main contact at the National Library of Australia for the Kinetica implementation is Andrew Wells (awells@nla.gov.au).

2 Server Implementation

2.1 Database changes

The database for the BOOK Plus system consists of three major files, a bibliographic file, an authority files and holdings file. These files are interlinked although for Z39.50 purposes, the three files are modelled as separate databases. This way, for an author search, for example, the server will return a bibliographic MARC record in response to an enquiry on the bibliographic database and a MARC authority record in response to an enquiry on the authority database.

For version control via the date and time stamp to work correctly, it was necessary to change the structure of the date and time recorded against the three major files, bibliographic, authority and holdings. Now the time is recorded to 100th of a second. All the programs that update the date and time were verified to ensure that the version stamp was only being updated in cases where it caused a permanent change in the data and that all cases were being recorded. For example, a holdings record version stamp is not changed each time a holding item circulates, only when something such as the price or permanent location changes.

2.2 Database additions - Task Package

The task package files were added to the database. Three files were defined, task header, task actions and task records. The following table indicates the data elements of Z39.50 update and the far right column indicates the data that is stored in the task package files on the BOOK Plus database. Elements in brackets are non standard additions.

Element
Who supplies?
Target Response
Task Package

File

Reference id
origin
yes -repeat

Function
origin

(Header)

Package type
origin
yes -repeat
Header

Package name
origin
yes -repeat
Header

User id
origin
yes -repeat
Header

Retention time
origin
yes -repeat
Header

Permissions
origin
yes -repeat
Header

Description
origin
yes -repeat
Header

Target Reference
 target
yes
Header/Action/Record

Task Status
 target
yes
Header

Package diagnosis
 target
yes
Header

Creation Date and Time
 target
yes
Header

Action
origin
yes -repeat
Action

Action qualifier
Origin
Yes - repeat
Action

Database name
origin
yes -repeat
Action

Schema
origin
yes -repeat
Action

Element Set name
origin
yes -repeat
Action

Update status
 target
yes
Action

Global diagnostics
 target
yes
Action

(Number of records)
 target

(Action)

(Number of records processed)
 target

(Action)

Supplied records
origin

record ids
origin

Record

supplemental ids
origin

Record

task package records - record and/or diagnostic
 target
yes
Record

record status
 target
yes
Record

Correlation info

(note or supplementary information)
origin
yes -repeat
Record

Wait action
origin

(Header)

Elements
origin

(Header)

Other information
origin
yes -repeat
(Header)

2.3 Software changes

The BOOK Plus system already included a Z39.50 server enquiry function. The software was built on YAZ server tools provided by Index Data of Copenhagen. These tools already catered for Z39.50 extended services and update. The system also included a background processing task that processed downloaded records from the Union Catalogue system of the National library of Australia, The Australian Bibliographic Network (ABN). The following changes were required to implement the UCP:

2.3.1 Enquiry changes

· The programs that creates bibliographic and authority MARC records for Z39.50 Search and Present responses needed to be modified to write the date and time stamp into field 005. In the case of bibliographic records, the date and time stamp from the bibliographic record is used unless one of its associated authority records has a later date and time stamp, in which case, that is used. The date and time stamp of linked holdings records does not affect the bibliographic record version as the date and time of the bibliographic record does not affect the authority record version.

· A new program needed writing to accept and respond to Z39.50 enquiry transactions of the task packages, using Ext-1 use attributes

2.3.2 Changes for update

The background task that takes MARC records from the ABN downloading holding files and updates the databases needed the following modifications:

· To write the task package files at the beginning of the update process, then update them at the end and sometimes during the update process.

· To accept deletions as well as inserts and replacements

· To accept special updates, especially merge actions

· To map UCP diagnostics to the diagnostics created by the update program and to write these to the task package files

The following table indicates the programs that are employed in the update process, indicating where it was necessary to write new programs and change existing programmes:

Step
Status
Description

1
Existing Z39.50 enquiry program
Unpicks data from Z39.50 message

Authentication

BER encoding / decoding

Includes YAZ utilities

Reformats C structure data output

2a
New
Sends records to file awaiting load

File BKABND, simple one MARC record structure

2b
New
Writes interim task package record

File BKZTSK – Header

BKZTSA – Action

BKZTRS – Records

3a
Existing background load program
Loads records from BKABND

Validation

Determines if an insert is processed as a replace

Modifications:

Validates the date and time stamp for replacements

Assigns new date / time stamps following additions and changes

3b
New
Updates task package; translates diagnostics to UCP diagnostics

3c
Existing Z39.50 enquiry program
Constructs MARC record for Z39.50 response

Can be called by 3b if record required

Modified to write date / time stamp into 005 field

4
New Z39.50 enquiry program
Responds to Search requests of task package

Uses Ext-1 use attributes

2.3.3 Implementation decisions

Authority records are loaded as separate records in separate update requests. One update request cannot handle a mixture of bibliographic and authority data. However, when bibliographic records are loaded, this may result in the creation of new authority records for headings that do not currently exist. This is part of the normal loading procedures. The database name in the update request is used to determine whether or not the loading is to the bibliographic or to the authority file.

Holding records are loaded either as fields within the bibliographic record or as separate full MARC records. Loading via the new OPAC holdings record is under review.

For the initial implementation, only one record per task package is sent for the majority of transactions.

Implementation of batch edit and replace has been deferred as it can be managed entirely by the cleint, by sending multiple transactions.

2.4 Data Integrity

2.4.1 Prevention of update collision

Originally the UCP only included one solution to this problem, using version control via the date and time stamp. The alternative record lock solution was provided at the request of some members of the ZIG community.

2.4.1.1 Version control via date / time stamp

Accurate version control via a date / time stamp can be used to avoid incorrect updating. The origin (client) does not update the date and time stamp but returns it to the target (server) with the updated record as a "magic token". The server compares the date / time stamp on the incoming record and compares it with the database date / time stamp. The update would be rejected if the time stamp did not match or were missing.

This protects against an origin retrieving a record from a results set, then updating it and unknowingly undoing changes that had been made by another origin in between time.

If an update is rejected because of a conflict of date and time stamp, then the latest version of the record should be supplied. The client could then display this record in a compare screen with the original record showing in the left half of the work pane and the new version in the right half together with an appropriate message. Alternatively, the client could resolve the conflict itself. The user should be able to cut and paste between the two versions, before deleting the old version then requesting update again with the OK button.

The date / time stamp control method can tolerate a break in the session without needing to re-request the record. Conversely, it is possible that the record may have been deleted. If this occurs, then the system should give the UCP diagnostic 955 - "Record replace, element update or record delete rejected - record or element not found or not uniquely identified".

The BOOK Plus server uses the version control method. See 2.3.1 for an indication of how the date / time stamp is applied. The date and time stamp is checked for all transactions except record inserts.

Scenario

· Origin 1 retrieves a record. Record contains a date and time stamp as a version identifier in MARC field 005. The time stamp represents the last time the record was updated (either the record itself or an integrated component part such as an authority).

· Origin 2 retrieves the same record and makes changes to it.

· Target processes Origin 2's changes then writes new date and time to record.

· Origin 1 tries to send update changes and is informed that the record has since changed. Target may send the new version of the record with the diagnostic
2.4.1.2 Control via record locking

Another method of control is via record locking which assigns an exclusive update option to a particular identified user, optionally for a specific time period. The lock is achieved by sending record replace using the update schema. Not only does this allow the origin to set a lock on a record, it also allows the origin to request a version of the record that is suitable for update. Note that version control may also be used in conjunction with record locking.

Record locking may not provide the same level of control as date / time stamp comparison if the lock is assigned to a user identification because more than one work station may log on with the same identification.

If the lock is assigned to a combination of session identification and user identification, then the lock will expire when the session terminates even if the record was not updated. Therefore if the connection is broken, the client needs to log in again and retrieve the record a second time. If possible, the client could display the record as previously edited in a compare screen.

If the lock is not assigned to a combination of session identification and user identification, then the target risks having records locked for extended periods and will have to implement clean up procedures for long outstanding locks.

Scenario

· Origin 1 retrieves a record. Record contains a date and time stamp as a version identifier in MARC field 005.

· Origin 2 retrieves the same record.

· Origin 2 sends element update request using the lock schema.

· The target locks the record so that only Origin 2 may change the record until Origin 2 has released it. Optionally, the target may then (and only then) send back a record suitable for change.

· Origin 2 makes changes and sends them.

· Target processes the changes then writes new date and time to record and unlocks record

· Origin 1 tries to send update changes and is informed that the record is locked or has since changed. Target may send the new version of the record with the diagnostic.

2.4.2 Prevention of accepting incomplete records in record replace

The original text of Z39.50 stated that a record replace transaction should always include a full record. On analysis, this requirement seems impossible to implement. Records that are supplied in Z39.50 search and present responses using the element set F may not necessarily be full records. There may have been parts of the record that were omitted as not being suitable for enquiry or for external access.

The edit / replace record has been introduced in the UCP to circumvent the ensuing problems. It can be used to convey to the target the exact nature of changes that have been made to a record by supplying both before and after images of the record being changed. Without the qualifier, the target would assume that any fields not in the record supplied by the origin are to be deleted. This may not be the intention of the origin that may be unaware that the record it received was not a full record, perhaps having been obtained from an unrelated search that used an unknown element set.

The current implementation of the UCP on the BOOK Plus server does not yet include use of the edit / replace record. Instead, the server is configured so that any fields that are omitted from a record that is constructed using the FULL element set for Z39.50 search and present are protected when a Z39.50 record replace transaction is processed.

2.4.3 Error Control

One of the main benefits of Z39.50 and the Union Catalogue Profile is the management of update errors. Diagnostic messages can be associated with bibliographic records in such a way that the origin can track update on a server and enable interactive or near interactive resolution of errors by the person originating the transaction. In traditional automated union catalogues, error resolution is a batch process, handled centrally by network staff. This process invites bottle necks and introduces delays in understanding by separating the source of an error from its resolution. By enabling the error resolution to be both distributed and interactive or near interactive for the majority of cases, the process can be made both faster and more efficient. Central quality control can be achieved by sampling and by review by request.

In most cases, the target decides how it is going to process an update, either interactively, in background or in batch. For interactive and batch processing, it is the responsibility of the origin (client) to determine whether or not an update has completed successfully. The target (server) posts the results of update transactions into the task package using task reference identifiers supplied by the origin. The origin then sends normal Z39.50 queries to the target to collect the results. It is envisaged that the Strategy client will include a background task that automatically checks the outstanding task packages. Also envisaged for the client is a parameter table that allows error messages to be sifted for efficient error control. The various UCP diagnostic messages can be coded for information only, for reporting or for signalling to a user that an error message needs attention. For example, the signal could be in the form of an icon that colours or changes form in some way to indicate a critical error condition.

The background update process on the BOOK Plus system generate UCP diagnostics by mapping its existing messages to those defined. Records that fail update are supplied in the response and are also available in an error file on the system, accessed by a task package query.

2.4.4 Ensuring synchronisation of records in local and union catalogues

If the diagnostics of the UCP are correctly implemented, UCP clients should be able to ensure that records processed by the client are consistent among all the targets that they update. A good client will be able to define critical diagnostics that need immediate attention such as authority control and validation and separate them in processing from informational diagnostics.

Nevertheless, in a union catalogue, it is normal for records to be updated by other union catalogue members, or by background or batch routines. The problem of keeping local catalogues aligned with all union catalogue changes is not addressed directly by the UCP. Persistent query is a Z39.50 extended service that like database update also uses task packages for storage of results instead of returning the results directly in a Z39.50 response. Persistent queries can be established on one system, for example a union catalogue, searching for records related to a particular location with a particular date and time stamp range. Results of the persistent query can be posted to the task package then despatched using another Z39.50 extended service, export evocation.

2.5 Updating status codes

During the course of the implementation of the UCP, clarification was sought on the interaction of the various status codes that existed for Operation, Task, Update and Record. A ZIG commentary is available at http://lcweb.loc.gov/z3950/agency/wisdom/esstatus.html. The following table indicates how these statuses relate to the various messages and the expected combination of values as per the ZIG commentary above.

Operation Status

Task Status
Update Status
Record Status

Done
Complete
success or

partial (= partially successful)
success or

failure

Update Response
Accepted
Active
blank
blank or

queued

in process

success

failure

Accepted
Pending

blank
blank or queued

Failure
Aborted

failure
failure

pending

blank
queued

Task Package in

Search / Present Response

active
blank
queued

in process

success

failure

complete
success or

partial (= partially successful)
success or

failure

aborted

failure
failure

3 Implementation stages

The implementation was achieved as a staged process. As there were no known existing clients or servers, the process was complicated by the necessity to carefully coordinate client and server development.

The table below indicates the various stages employed:

STAGE
BOOK Plus (Target)
Strategy Client (Origin)

1
Record insert; MARC record

Write 005 to output MARC records

Update response

Update task package

Map diagnostics

Multi-target parameters

Display version

Receive & display diagnostics

2
Record replace; use 005, give conflict diagnostic

Record delete; use 005

Accept holdings from bib record

Accept task p. search

Record replace / diagnostics

Record delete

Holdings in MARC record

Task package search

3

RI, RR, RD authority record

RI, RR, RD holding record (OPAC holdings record under consideration)

Merge

Authority records (Pre update searches)

Holdings records

Merge

4

(In process)
Record replace - use GRS-1 Edit / replace record

Accept review codes

Batch edit / replace

Edit / replace record

Send review codes

Batch edit / replace

5

(Deferred)
Lock will not be implemented

Does not duplicate information

Lock may be implemented for foreign servers

Does not duplicate information

4 References

4.1 System and Software Resources

There is a UCP compliant test server available on our web site:

202.135.95.2, port 210, database = Default - bibliographic USMARC

202.135.95.2, port 210, database = Default-A - authority USMARC

202.135.95.2, port 3210, database = Default - bibliographic UNIMARC

202.135.95.2, port 3210, database = Default-A - authority UNIMARC

To request a password for update, please apply to sue.harmer@geac.com.au.

The Strategy Cataloguing Client may also be made available for testing purposes on application to Janifer Gatenby jgatenby@geac.fr.

The YAZ toolkit that includes update is available from http://www.indexdata.dk/yaz/
Crossnet also supplies a selection of tool kits. Information is available at: http://www.crxnet.com/
4.2 Documentation resources

Union Catalogue Profile http://www.nla.gov.au/ucp/
ZIG commentary: ES statuses and update http://lcweb.loc.gov/z3950/agency/wisdom/esstatus.html
Z39.50 Extended services definitions http://lcweb.loc.gov/z3950/agency/defns/oids.html#9
 Revised update definition http://lcweb.loc.gov/z3950/agency/defns/update-es-rev1.html
 Record insert action qualifier http://lcweb.loc.gov/z3950/agency/defns/insert-qualifier.html
 Edit/replace action qualifier http://lcweb.loc.gov/z3950/agency/defns/editreplace-qualifier.html
 Update schema http://lcweb.loc.gov/z3950/agency/defns/updtsch.html
 Update schema tag set http://lcweb.loc.gov/z3950/agency/defns/updtsch.html#tagset
 Extended services diagnostics set http://lcweb.loc.gov/z3950/agency/defns/esdiag.html#pending
Z39.50 UCP Implementation Guidelines June 1999 Page: 1

