Technical Premises and Digital Preservation
Thinking Ahead, Designing Now

Caroline Arms
Office of Strategic Initiatives
Library of Congress
caar@loc.gov
Planning for the “system”

• What does it have to do?
 – Aggregate, Serve, Preserve

• Guiding principles
 – Consistent with mission and philosophy of NEH and LC
 • Must demonstrate good use of taxpayer $
 • Take care to preserve the asset that NDNP builds
 • Openness – “We the people”
 • Serve scholars and general public
 • Must deliver service to current users of old newspapers
 • Must allow for new services, new users, new expectations
 – Design with a 20-year program and perpetual access in mind
 – Don’t try to do everything at once, but do not close off options
What is certain?

• Technology will change
 – Technology for processing will improve -- and get cheaper
 • OCR
 • Automated segmentation into articles
 – Interface conventions and constraints will change
 – Techniques for indexing and retrieval will improve
• Expectations of users will change
 – Cannot predict what scholars of the future will want, or when
 • Text mining for topics; analysis by time and place
 – New user communities will need new services
 • PDA access; integration with learning management
Starting with a clean slate

• What does “do it right” mean in this context?
 – Content is more important than today’s system
 – Design system to be upgradeable
 • Modular
 – Assume interoperability is a requirement
 • A resource that stands alone but plays well with others
 – No out-of-the-box solution exists
 – Explicit incorporation of testbed phase
 • Opportunity for learning
 • Validation of assumptions
 • Develop best practices (perhaps leading to standards)
 • Build corpus that is of value for technical experimentation
Learn from experience

• Think carefully about choice of formats but expect change
• Specifications must be detailed to assure consistency
 – Formats becoming increasingly complex
• Need to validate technical integrity and conformance to specs.
 – Quality control by humans, with automated support
 – Fully automated validation prior to ingest
• Need metadata to understand what rules were in play when digital content was created
• Build on development skills and experience at LC
 – Using METS for compound objects
 – Initial testing of FEDORA promising
 – JPEG 2000 for zooming view
 – What worked well with *Stars and Stripes*
• Expect to learn from awardees
Look forward

• JPEG 2000 as delivery image format
 – Track adoption, tool development, and new features
 – Tap external expertise to develop profile
 – Consider for master format down the road

• Emerging best practices for preserving digital content
 – OAIS reference model
 • Ingest, manage, disseminate
 • Categories of metadata to support preservation
 – PREMIS (PREservation Metadata: Implementation Strategies)
 • http://www.oclc.org/research/projects/pmwg/
 • Core elements -- specification out soon
 – NISO technical metadata for images
 • http://www.niso.org/committees/committee_au.html
 • Revised draft expected soon
 – NDIIPP architecture principles
NDIIPP Preservation Architecture

• National Digital Information Infrastructure and Preservation Program
 – http://www.digitalpreservation.gov/

• Framework to guide development of national preservation network

• Design principles:
 – Support institutional relationships
 – Separate preservation and access
 • storage and object management independent of search and display
 • task support for administrators separate from end user access
 – Construct modularly
 – Assemble over time, not all at once
 – Upgrade parts without disruption of the whole
 – Use broadly adoptable standards and protocols
Open in many senses

• We envisage a system that is open in many senses:
 – freely accessible (a public resource)
 – available to use and re-use
 – deep linking and persistent identification to support citation
 – corpus for scholarly analysis, encouraging creative use
 – open technical formats
 – interoperable through support for standard protocols
 • e.g., OAI-PMH, SRW/Z39.50
 – transparent modular architecture, extensible by design
 – software based on open source code to degree possible.